Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences.
نویسندگان
چکیده
Transposable elements (TEs) are main components of eukaryote genomes-up to 50% in some vertebrates-which can replicate and jump to new locations. TEs contribute to shape genome evolution, actively by creating new genes (or exons) or altering gene expression as consequence of transposition, and passively by serving as illegitimate recombinational hotspots. Analysis of amphioxus TEs can help to shed light on the ancestral status of chordate TEs and to understand genome evolution in cephalochordates and early vertebrates. The Branchiostoma floridae genome project has revealed that TE content constitutes ∼28% of the amphioxus genome. Amphioxus TEs belong to more than 30 superfamilies, which represent a higher diversity than in vertebrates. Amphioxus TE families are also highly heterogeneous as generally none of their members are drastically more abundant than others, and none of the TEs seems to have suffered any massive expansion. Such diversity and heterogeneity make the amphioxus genome not to be particularly prone to major evolutionary changes mediated by TEs, and therefore favoring genomic evolutionary stasis. Comparison of TE diversity and content between amphioxus and vertebrates allows us to discuss whether or not a burst of TEs happened after the two rounds of whole-genome duplication that occurred during early vertebrate evolution.
منابع مشابه
An Amphioxus Gli Gene Reveals Conservation of Midline Patterning and the Evolution of Hedgehog Signalling Diversity in Chordates
BACKGROUND Hedgehog signalling, interpreted in receiving cells by Gli transcription factors, plays a central role in the development of vertebrate and Drosophila embryos. Many aspects of the signalling pathway are conserved between these lineages, however vertebrates have diverged in at least one key aspect: they have evolved multiple Gli genes encoding functionally-distinct proteins, increasin...
متن کاملEvidence of G.O.D.’s Miracle: Unearthing a RAG Transposon
Diversity of antibodies and T cell receptors is generated by gene rearrangement dependent on RAG1 and RAG2, enzymes predicted to have been derived from a transposable element (TE) that invaded an immunoglobulin superfamily gene early in the evolution of jawed vertebrates. Now, Huang et al. report the discovery of ProtoRAG in the lower chordate Amphioxus, the long-anticipated TE related to the R...
متن کاملExploring developmental, functional, and evolutionary aspects of amphioxus sensory cells
Amphioxus has neither elaborated brains nor definitive sensory organs, so that the two may have evolved in a mutually affecting manner and given rise to the forms seen in extant vertebrates. Clarifying the developmental and functional aspects of the amphioxus sensory system is thus pivotal for inferring the early evolution of vertebrates. Morphological studies have identified and classified amp...
متن کاملDNA methylation in amphioxus: from ancestral functions to new roles in vertebrates.
In vertebrates, DNA methylation is an epigenetic mechanism that modulates gene transcription, and plays crucial roles during development, cell fate maintenance, germ cell pluripotency and inheritable genome imprinting. DNA methylation might also play a role as a genome defense mechanism against the mutational activity derived from transposon mobility. In contrast to the heavily methylated genom...
متن کاملCharacterization of Evolutionarily Conserved MicroRNAs in Amphioxus
Amphioxus is an extant species closest to the ancestry of vertebrates. Observation of microRNA (miRNA) distribution of amphioxus would lend some hints for evolutionary research of vertebrates. In this study, using the publicly available scaffold data of the Florida amphioxus (Branchiostoma floridae) genome, we screened and characterized homologs of miRNAs that had been identified in other speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Briefings in functional genomics
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2012